

ARE RESISTANCE RATES AMONG BLOODSTREAM ISOLATES A GOOD PROXY FOR OTHER INFECTIONS: ANALYSIS FROM THE BSAC RESISTANCE SURVEILLANCE PROGRAMME

Carolyne Horner¹ Shazad Mushtaq,² David M Livermore³ and the BSAC Resistance Surveillance Standing Committee

¹British Society for Antimicrobial Chemotherapy, Birmingham, UK; ²Public Health England, London, UK; ³University of East Anglia, Norwich, UK

INTRODUCTION

- Bacteraemia represents an invasive infection, whereas bacteria isolated from other sources (e.g. urine, sputum) may represent colonisation.
- Resistance rates of isolates from bloodstream infections (BSI) are often used as a general measure of resistance prevalence¹ but may not represent other infection types.
- Access to representative resistance rates in different infection types is important in guiding appropriate antibiotic therapy.
- Successful clinical outcome of an infection requires appropriate antibiotic treatment and source control; however, in the management of pneumonia, source control is rarely possible, making antibiotics the mainstay of treatment.
- We compared resistance rates between BSI and lower respiratory tract infection (LRTI) for isolates collected in a single season from the BSAC Resistance Surveillance Programme.

METHODS

- 24 laboratories collected isolates, to a fixed annual quota per species group.
- BSI isolates were collected during calendar 2018.
- LRTI isolates were collected between Oct 2017 - Sept 2018; *S. pneumoniae* were collected from community-onset (CO-) LRTI, whereas Enterobacterales, *P. aeruginosa* and *S. aureus* were collected from hospital-onset (HO-) LRTI.
- MICs were determined centrally by BSAC agar dilution.³ EUCAST breakpoints (v9.0) were used.⁴
- Serotyping was completed for *S. pneumoniae*.

Organism	BSI (n=1670)	LRTI (n=1118)
<i>P. aeruginosa</i>	209	179
<i>E. coli</i>	475	241
<i>K. pneumoniae</i>	163	110
<i>E. cloacae</i>	159	73
<i>S. pneumoniae</i>	208	325
<i>S. aureus</i>	456	190
Methicillin-susceptible	428	172
Methicillin-resistant	28	18

TABLE 1. Number of isolates tested according to infection type. BSI, bloodstream infection; LRTI, lower respiratory tract infection.

RESULTS

- 2788 isolates were reviewed (Table 1).
- S. pneumoniae* and *P. aeruginosa* from LRTI had higher resistance rates than BSI isolates (Fig. 1):
 - S. pneumoniae*: five LRTI isolates were resistant to ceftobiprole.
 - P. aeruginosa*: two BSI isolates were resistant to ceftazidime/avibactam; no isolates were resistant to colistin or ceftolozane/tazobactam.
- Enterobacterales and *S. aureus* from BSI and LRTI had similar resistance rates (Fig. 2) except:
 - A higher rate of amoxicillin/clavulanate resistance among LRTI *E. coli* (61% vs. 41%).
 - A higher rate of colistin resistance among BSI *E. cloacae* (12% vs. 7%).
- S. aureus*: No resistance to ceftaroline or ceftobiprole.
- Gram-negatives: resistance to ceftazidime/avibactam, and ceftolozane/tazobactam was low (<1%).
- Enterobacterales: 12-19% resistance to ceftobiprole.

FIGURE 1. Rates of resistance among *S. pneumoniae* and *P. aeruginosa* in BSI (red bars) and LRTI (blue bars). Key: #MIC >0.06mg/L; \$MIC >0.5mg/L. Antimicrobial abbreviations are per EUCAST system.⁵

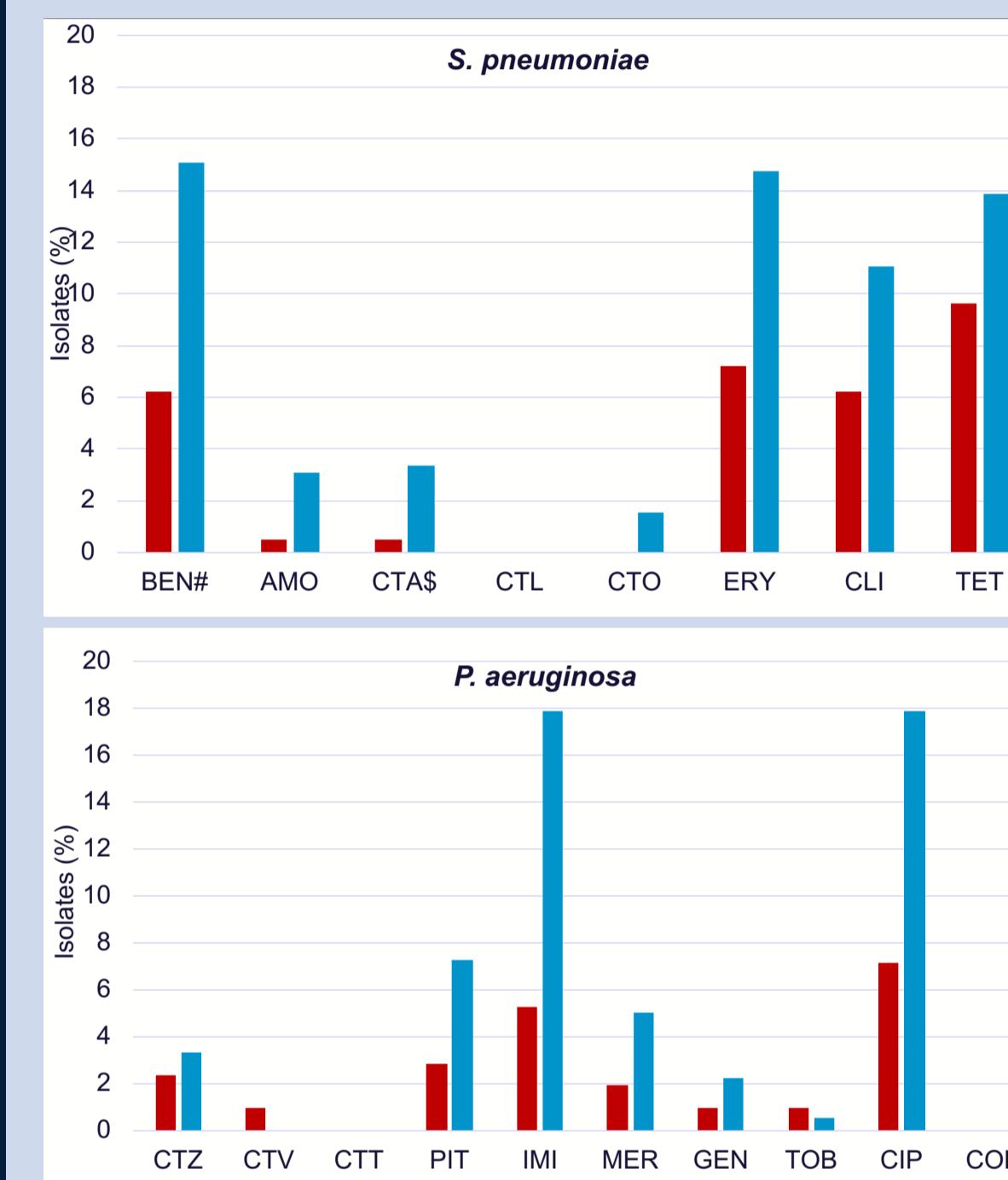
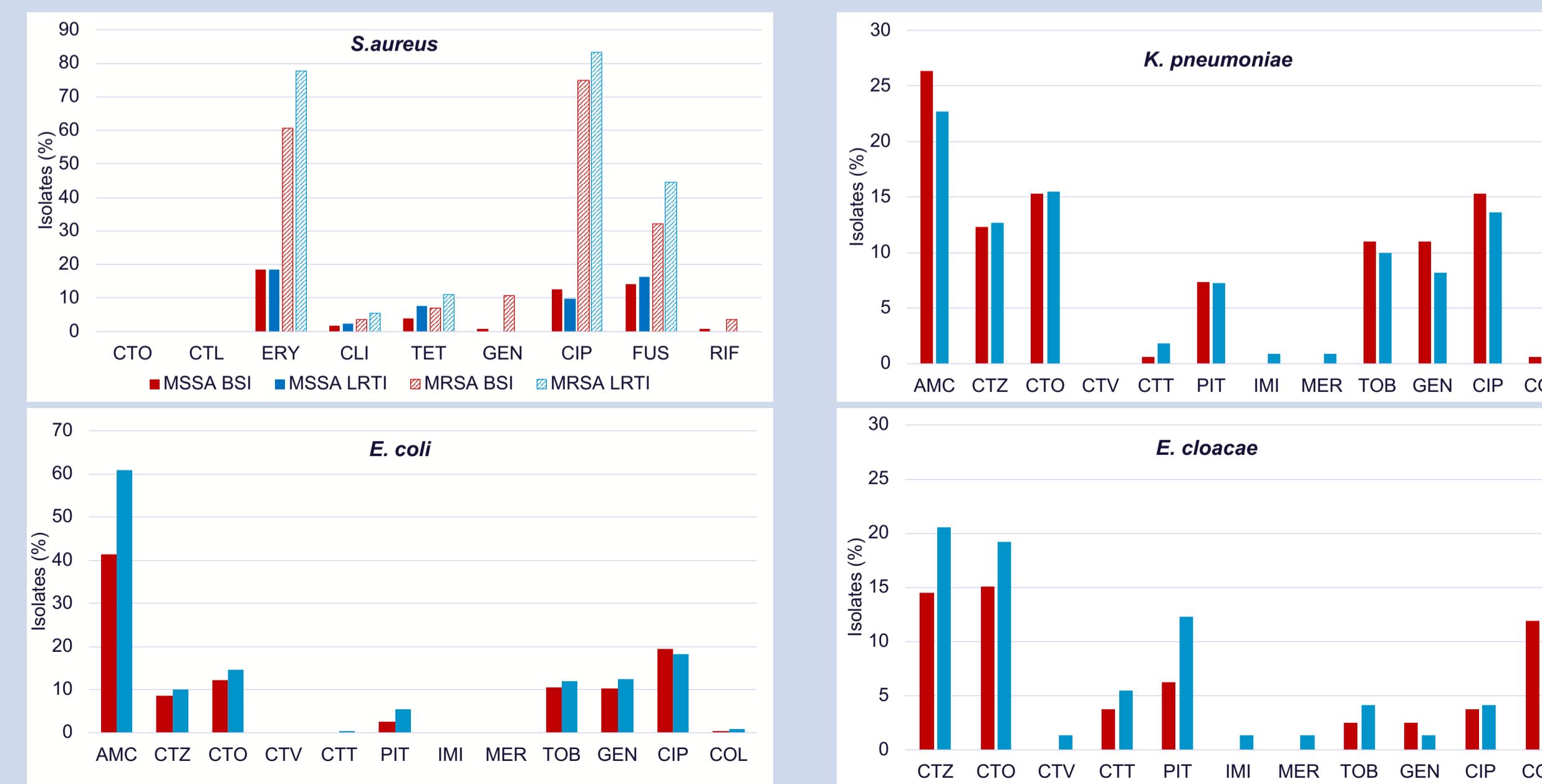



FIGURE 2. Rates of resistance among *S. aureus* and Enterobacterales (*E. coli*, *K. pneumoniae* and *E. cloacae*) in BSI (red bars) and LRTI (blue bars). Key: Antimicrobial abbreviations are per EUCAST system.⁵

CONCLUSIONS

- Rates of resistance among bloodstream isolates are a reasonable proxy for most antibiotics for Enterobacterales and *S. aureus*.
- Among *S. pneumoniae* and *P. aeruginosa* resistance to all agents was consistently more prevalent in LRTI.
- When using susceptibility data to guide appropriate antibiotic prescribing, linking antibiotic resistance trends to the specific clinical indication and/or site of infection should be considered.
- Relying on surveillance data from bacteraemia reports alone could lead to inappropriate/sub-optimal treatment for some infection types and may be of particular importance for hospital-acquired pneumonia.

ACKNOWLEDGEMENTS

BSAC is grateful to all of the companies that have sponsored the Programme;² sentinel laboratories submitting isolates, and staff at the Central Testing Laboratory, PHE, London.

The BSAC Standing Committee on Resistance Surveillance: Dr M. Allen, Dr D.F.J. Brown, Prof. D.M. Livermore, Dr C. Longshaw, Prof. A. Johnson, Prof. A.P. MacGowan and Prof. N. Woodford.

REFERENCES

- 1) ECDC Surveillance Atlas: <https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc>
 - 2) www.bsacsurv.org.uk, incl. sponsor list.
 - 3) Reynolds et al. 2008. JAC, 62, suppl 2: ii15-28.
 - 4) http://www.eucast.org/clinical_breakpoints.
 - 5) EUCAST System for Antimicrobial Abbreviations. https://eucast.org/ast_of_bacteria/guidance_documents/
- AMC, amoxicillin/clavulanate; AMO, amoxicillin; BEN, benzylpenicillin; CIP, ciprofloxacin; CLI, clindamycin; COL, colistin; CTL, ceftaroline; CTO, ceftobiprole; CTT, ceftolozane/tazobactam; CTV, ceftazidime/avibactam; CTZ, ceftazidime; FUS, fusidic acid; GEN, gentamicin; IMI, imipenem; MER, meropenem; PIT, piperacillin/tazobactam; TET, tetracycline; TOB, tobramycin.

PROGRAMME CO-ORDINATOR

Dr Carolyne Horner: rs@bsac.org.uk.