

RESISTANCE TRENDS AMONG ENTEROBACTERALES FROM BACTERAEMIAS IN THE UK AND IRELAND, 2007 - 2017

Shirin Aliabadi¹, Carolyne Horner², Shazad Mushtaq³, and David M Livermore⁴ on behalf of the BSAC Standing Committee on Resistance Surveillance[#]

¹Imperial College London, London, UK; ²British Society for Antimicrobial Chemotherapy, Birmingham, UK; ³Public Health England, London, UK,

⁴University of East Anglia, Norwich, UK

INTRODUCTION

The BSAC Resistance Surveillance Programme has monitored antimicrobial susceptibility in the organisms causing bacteraemia in the UK and Ireland since 2001.¹

We review data for *Escherichia coli*, *Klebsiella*, *Enterobacter*, *P. mirabilis*, and *Serratia* collected between 2007-2017.

METHODS

Consecutive isolates causing clinically significant bacteraemia were tested; participating laboratories across the UK and Ireland (n=24-40) collected 7-20 isolates/species group per year.

MICs were determined centrally by BSAC agar dilution² with EUCAST breakpoints (v9.0, 2019).³

Due to changes in taxonomy,⁴ *Enterobacter aerogenes* were classified as *Klebsiella aerogenes* and were excluded from further analysis.

RESULTS

Isolates tested (n = 13,608)

- *E. coli* (n=5364); *Klebsiella* (n=2686); *P. mirabilis* (n=2155); *Enterobacter* (n=1819), and *Serratia* (n=1584).

Notable resistance trends

- A decrease in the rate of resistance to piperacillin/tazobactam among most species (Fig.1 A-E).
- A decrease in the rate of resistance to ciprofloxacin among *E. coli*, *Enterobacter* and *Serratia* (Fig.1 A, D, E).
- Average annual rates of resistance to ceftolozane/tazobactam ranged from 0.2% (*E. coli*) to 9.2% (*E. cloacae*); rates of resistance to ceftobiprole were higher [10% (*E. coli*) and 20% (*E. cloacae*)].
- Rates of colistin resistance were low among *E. coli* (0.5%), and *Klebsiella* (1.2%); rates were higher, and increasing among *E. cloacae* (6.1% in 2011 to 13.4% in 2017).

Mechanisms of resistance

- Rates of ESBL production were stable; higher among *E. coli* (9.6%), *Enterobacter* (10.4%), and *Klebsiella* (14.7%), compared with <1% among *P. mirabilis* and *Serratia* (Fig.1 A-E).
- Carbapenemase producers remained rare (n=20, without trend): most frequently among *Klebsiella* (n=13), with OXA-48-like being the most common enzyme (n=8).

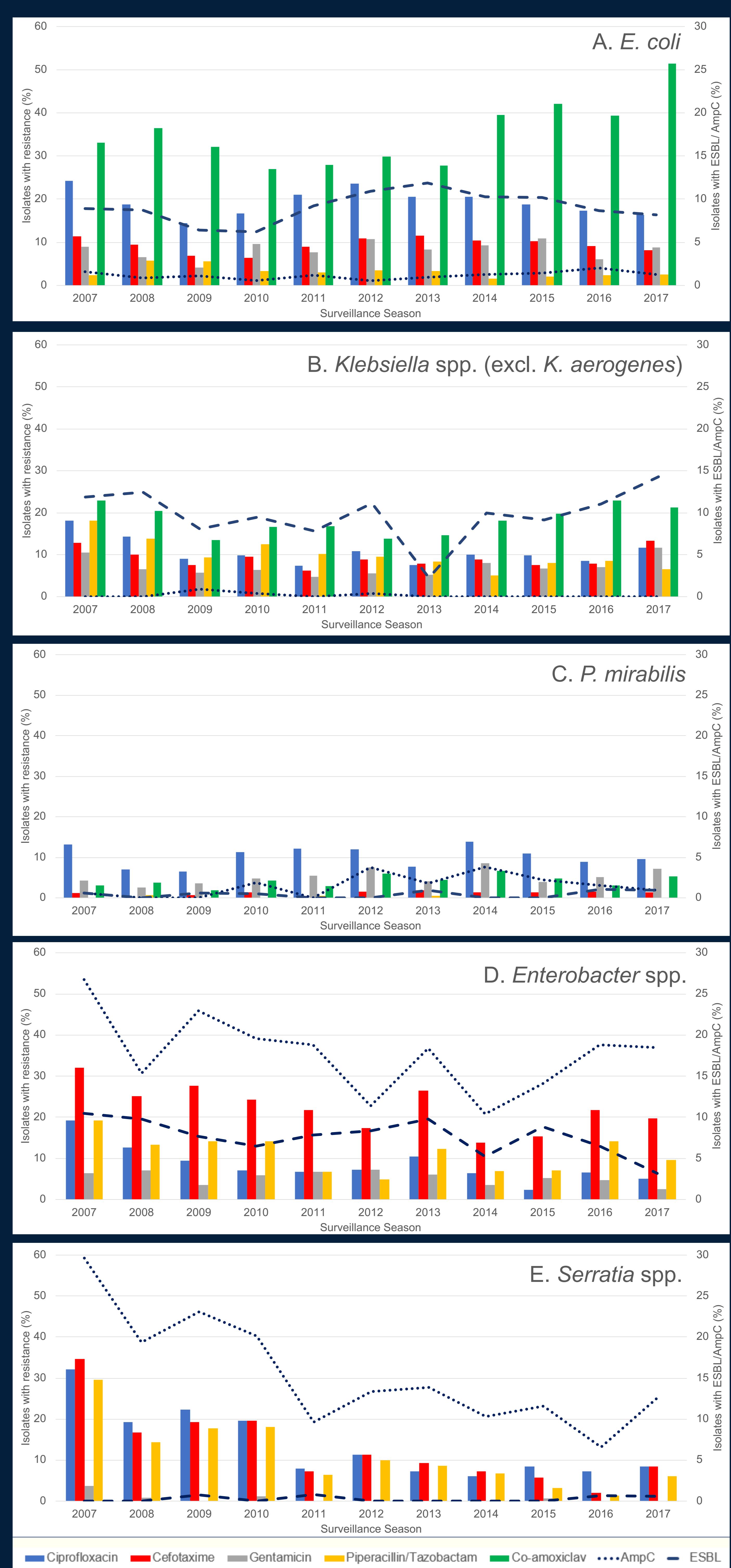
CONCLUSIONS

- Rates of resistance in the UK and Ireland remained largely stable over the 11-year period.
- Carbapenemase-producing Enterobacterales were not commonly associated with bacteraemia despite rising reference laboratory submissions (n=20 in 2008 compared with >3000 in 2017).
- These trends are reassuring and may reflect interventions to reduce inappropriate use of antimicrobials implemented across the countries surveyed.
- Comparison with equivalent data from Public Health England is required to determine if the trends identified are generalisable across England.

ACKNOWLEDGEMENTS

These data have been presented at the Federation of Infection Societies (FIS) meeting, November 12th 2019, Edinburgh.

BSAC is grateful to: Correvio, MSD, and Pfizer for currently sponsoring the Programme, sentinel laboratories submitting isolates, and Shazad Mushtaq and staff at the Central Testing Laboratory, PHE, London.


BSAC Standing Committee on Resistance Surveillance: Alasdair MacGowan (Chair), Derek Brown (formerly EUCAST), David Livermore (UEA), Chris Longshaw (BSAC Treasurer), Alan Johnson (PHE), Neil Woodford (PHE).

Sponsor representatives: Nowel Redder (Correvio), Adela Alvarez Buylla (MSD), Mike Allen (MSD), James Campling (Pfizer Vaccines), and Jan Chesham (Pfizer Anti-Infectives).

TO REQUEST ISOLATES FROM THE BSAC COLLECTION

Contact Dr Carolyne Horner. Email: rs@bsac.org.uk

RESULTS

FIGURE 2. Antimicrobial resistance trends and rates of ESBL and high-level AmpC for the main species of Enterobacterales collected.

REFERENCES

- 1) www.bsacsurv.org.
- 2) Reynolds, et al. *J Antimicrob Chemother* 2008. 62, suppl 2 ii15-1128.
- 3) http://www.eucast.org/clinical_breakpoints/
- 4) Munson & Carroll, *JCM* 2019. 57(2): e0118-18.